
Functional Requirements for integrating a
controller in drag&bot

This is a list of all requirements that the robot controller should satisfy for being used by
drag&bot. If some of them are not meet, then further discussions are required.

a) Hardware / Communication requirements

drag&bot can provide the IPC or a IPC provided by the robot maker can be used if it accomplish the
following requirments:

FRA001 There is a standard PC / Industrial PC available with Ubuntu 16.04 LTS installed
as operating system. The PC can be 64 or 32 bits. 64 is desired.

Alternative possible solutions:

- Other Linux operating systems can be used
- ARM architecture

FRA002 ROS (Robot Operating System) is running on the PC defined in FRA001.

Additional information:

- d&b system uses ROS as middleware.

This requirements have to be satisfied by the robot controller:

FRA003 There is a data communication channel between robot controller and PC.

Additional information:

- Ideally it should be a TCP/IP connection through Ethernet.

FRA004 It is possible to send and receive data between the robot controller and the PC.

FRA005 Messages can be created / read through a Python / C++ API usable as part of a
ROS program. The messages must be as simple and understandable as possible.

Additional information:

- E.g. Socket library in Python / C++.
- E.g. IIWA Messages Protocol (see example in Appendix B)

FRA006 Each message triggers an operation in the robot controller such as moving the
robot.

FRA007 Controller can communicate status information back to drag&bot

If messages are non-blocking: polling. The robot controller responds so fast as possible to each

message without needing to finish the execution of the message. E.g. if the controller receives a

move command, then responds “ok” and starts to move. drag&bot knows when the move is finished

through the status information of the robot (target position, is it moving or target reached).

FRA101 The communication between the robot controller and the PC is non-blocking.

Additional information:

- Acknowledge of message received is immediately received
- A new message is immediately processed without needing to wait that

the previous message finished. No queue of messages.
- A move of the robot doesn’t block the communication to the driver

FRA102 If a new command arrives to the controller, the controller must respond in
milliseconds-range time to the message.

FRA103

If a new command arrives to the controller, the controller will immediately
trigger the requested action. The action should begin as fast as possible.

FRA104 Controller must be able to process a polling rate high enough to ensure the user
experience and the safety (typically 50 Hz).

If messages are blocking then drag&bot needs a second communication channel in order to stop the

robot during a move or continue receiving status information. This is not desired because it makes

blending more difficult to implement.

FRA201

There is a separate channel which broadcast robot status information (position,
status, etc.)

FRA202 A separate channel is needed for stopping the robot.

Also a combination of both of them can be used (non-blocking + status information streaming

channel).

b) Controller functionality

Notice:

drag&bot shouldn’t be the responsible for calculating the inverse kinematics (given a
Cartesian position, calculating which joint position corresponds to this Cartesian position).
The robot controller should be able to move the robot to a given Cartesian position.

FRC001 Each message triggers an action in the robot controller, such as move the robot
or stop the robot, or triggers information retrieval.

Additional information:

- A message can be called command or operation.

FRC002 Move command must exist. The robot shall move to a given position after
triggering this command.

FRC003 Stop current move command must exist. The robot shall stop after triggering
this command. The stop must be fast enough to ensure the security and a nice
user experience.

FRC004 Controller can use a Joint Position (rotation in degrees/radians) as a target
position in a move command.

Additional information:

- The position is defined as a list of rotation degrees / distance (for lineal
axis) corresponding with the DoF of the robot.

FRC005 Controller can use a Cartesian position as target position in a move command.

Additional information:

- A Cartesian position can be defined as X,Y,Z distances with a rotation
which can be specified either in quaternions, intrinsic Euler or extrinsic
Euler coordinates. Ideally quaternion or intrinsic Euler ZYX.

- Conversion between formats is also possible (e.g. ZYZ -> ZYX)

FRC006

The robot controller can move the robot from current robot position to any
target position as long as it is inside the workspace.

Additional information:

- A target position can be as far as needed from the current position. The
controller will be able to move the robot to the requested position.

FRC007 Target positions are preferable defined as absolute positions although drag&bot
can work with incremental positions by calculating the increments from current
robot position and target position.

Additional information:
- In case of incremental positions drag&bot needs a high frequency (at

least 50 Hz) robot status retrieval.

FRC008 Controller can PTP moves with Euler position as target in a move command.

FRC009 Controller can LIN moves with Euler position as target in a move command.

FRC010 Controller can PTP moves with Joint position as target in a move command.

FRC011 Optional: Controller can LIN moves with Joint position as target in a move
command

FRC012 Optional: Controller can do blending between consecutive move commands.

FRC013 Controller can cancel the current executed move command.

FRC014 Controller can queue several move commands and execute them one after
another.

FRC015 Desired: Controller can do blending between queued move commands.

FRC016 Controller can discard all queued move commands.

FRC017 Controller can send the current values of all joints to drag&bot.

FRC018 Controller can send the current position and orientation of the flange to
drag&bot.

FRC019 Controller can send the the current movement goal position and orientation to
drag&bot. If a trajectory (queued commands) is being executed then the goal
position is the current waypoint, not the last one.

FRC020 Optional: Controller can know if a position is physically reachable and send this
information to drag&bot.

FRC021 Controller can send information about occurred errors to drag&bot (e.g.
emergency stop)

FRC022 Optional: Controller can activate each digital IO separately

FRC023 Optional: Controller can send the status of each digital IO separately to
drag&bot.

FRC024 Optional: Controller can send the status of all digital IOs together to drag&bot.

FRC025 Optional: Controller can change the speed during the movement.

FRC026 Optional: Controller can recover from an error by triggering a command.

c) Other requirements

FRO001 There is URDF model of the robot.

Alternative possible solutions:

- There are CAD models of the robot
- There are specifications including length of links and rotation /

translation limits.

Appendix A1 – ROS Topics provided by d&b drivers

command_list

(robot_movement_interface::CommandList.msg)

This topic communicates the robot movement commands to the robot driver.

Header header: Timestamp information (see: std_msgs::Header.msg)

Command[] commands: List of movement commands (see below)

bool replace_previous_commands

 true: Replaces any planned command with current new commands.
 false: Adds the new commands to the command queue.

robot_movement_interface::Command.msg:

This message contains a flexible movement command for robotic drivers.

Header header: Timestamp information (see: std_msgs::Header.msg)

uint32 command_id: ID of the movement command

string command_type: the movement type (LIN, PTP)

string pose_reference: Name of the used base frame for the relative positions

EulerFrame pose_reference_frame: (optional) The values of the reference frame. If not set,

the command will be executed in '/base' frame.

string pose_type: type of the movement pose (JOINTS, QUATERNION,

EULER_INTRINSIC_ZYX)

float32[] pose: the values of the target frame relative to the refrence frame.

string velocity_type: type of the velocity values (M/S, RAD/S, %, ...)

float32[] velocity: the velocity values

string acceleration_type: type of the acceleration values (M/S^2, RAD/S^2, %, ...)

float32[] acceleration: the acceleration values

string effort_type: type of the effort values (N, NM, ...)

float32[] effort: the effort values

string blending_type: type of the vlending values (M, RAD, %, ...)

float32[] blending: the blending values

string[] additional_parameters: list of additional parameter names

float32[] additional_values: list of the corresponding values to the additional parameter

names

http://docs.ros.org/api/std_msgs/html/msg/Header.html
http://docs.ros.org/api/std_msgs/html/msg/Header.html

command_result (robot_movement_interface::Result.msg)

This topic communicates the result of the last movement from the robot driver.

Header header: Timestamp information (see: std_msgs::Header.msg)

uint32 command_id: ID of the corresponding movement command

int32 result_code: Result code of the corresponding movement

 0: no error occured during movement
 !0: error occured during movement

string additional_information: Additional information

robot_status (industrial_msgs::RobotStatus.msg)

This topic communicates the current robot status from the driver.

See industrial_msgs::RobotStatus.msg for further information.

tool_frame (robot_movement_interface::EulerFrame.msg)

This topic communicates the current coordinates of the robot tool frame from the driver. See

below for EulerFrame definition.

robot_movement_interface::EulerFrame.msg

Coordinates message of an arbitrary frame in Euler Intrinsic ZYX convention. For orientation

alpha is rotated at first in the z-axis (yaw), then beta is rotated in the new y-axis (pitch) and

finally gamma is rotated in the new x-axis (roll).

float32 x, y, z: translational coordiantes of the frame in meters

float32 alpha, beta, gamma: rotational coordiantes of the frame in rad

joint_states (sensor_msgs::JointState.msg)

This topic communicates all current joint states for the robot from the driver.

See sensor_msgs::JointState for further information.

current_speed_scale (std_msgs::Float32.msg)

This topic communicates the current speed factor for the robot from the driver.

float32 data: The current speed factor from 0.0 to 1.0.

io_states (robot_movement_interface::IOStates.msg)

This topic communicates the current states of inputs and outputs from the driver.

http://docs.ros.org/api/std_msgs/html/msg/Header.html
http://docs.ros.org/jade/api/industrial_msgs/html/msg/RobotStatus.html
http://docs.ros.org/api/sensor_msgs/html/msg/JointState.html

IOState[] inputs: Array of all digital input pins and their current value. See below for

IOState definition.

IOState[] outputs: Array of all digital output pins and their current value. See below for

IOState definition.

robot_movement_interface::IOState.msg

Status message for an arbitrary digital input or output.

int32 pin_number: The number of the digital I/O pin.

bool pin_value: The status of the digital I/O pin.

Appendix A2 – ROS Services provided by d&b drivers

scale_speed (robot_movement_interface::setFloat.srv)

This service scales the maximum speed of the robot in percentage. For example this function

can be called to reduce the overall speed to 50%.

rosservice call /scale_speed "value: 0.5"

Parameters:

float32 value: The value to scale the speed with. It can be set to a number between 0.0 and

1.0. A value smaller than 0.0 will be cropped to 0.01 and a value greater than 1.0 will be

cropped to 1.0. When the value is set to 0.0 the robot will stop and cancel the movement

commands.

Returns:
nothing

Note: Some robots might stop their current movement to standstill, before accelerating again

and continuing the movement with the new speed.

get_io (robot_movement_interface::getIO.srv)

This service reads the value of a digital i/o port and returns it to the user. For example this

function can be called to get the value of port 5.

rosservice call /get_io "number: 5"

Parameters:

int32 number is the digital i/o port to get the value for. Valid port numbers depend on the

number of ports provided by the driver.

Returns:

bool value: The value of the respective port, if no error occured.

int32 error: Error number:

 0 no error occured
 1 invalid port number

Note: Calling this service during robot movement might stop the movement and cancel the

movement commands.

set_io (robot_movement_interface::setIO.srv)

This service sets the value of a digital i/o port. For example this function can be called to set

the value of port 5 to true.

rosservice call /set_io "number: 5

value: true"

Parameters:

int32 number is the digital i/o port to set the value for. Valid port numbers depend on the

number and type of ports provided by the driver.

bool value: The value to set the port to.

Returns:

int32 error: Error number:

 0 no error occured
 1 invalid port number
 2 attempted to set an input port

Note: Calling this service during robot movement might stop the movement and cancel the

movement commands.

stop_robot_right_now (std_srvs::Trigger.srv)

This service lets the robot stop moving immediately and cancels the following movement

commands.

rosservice call /stop_robot_right_now

Parameters:
none

Returns:

bool success: true on successful stopping of the robot movement, false otherwise

string message: informational, e.g. for error messages

Note:
see also std_srvs::Trigger.srv

http://docs.ros.org/api/std_srvs/html/srv/Trigger.html

Appendix B - IIWA Message Protocols Example

===

Structure and functionality

===

Basically ROS_driver program is a Telnet-based command-driven TCP server.

A command is a string line (terminated with /r/n, or /n). Each commands

produces a fast response.

Command rate is stable until several thousands of commands per second with

direct ethernet connection.

Produced responses (replies) are also string lines.

Exceptions are catched in order to allow reconnecting in case of error or

collision.

Server logic:

 - wait until a new command is received through the socket (new line

ending character)

 - parse the command and parameters

 - execute the corresponding operation (non-blocking)

 - send back the reply with the produced arguments or message

Command types:

 - Status: robot won't move. Command reply include information

such as position.

 - Move: robot will move

Robot has four different modes:

 - Normal: moves cannot be cancelled without stopping.

 Allowed rate is insufficient for reactive operations (~100 ms

stopping). In this mode moves are

 internall queued in the controller if move commands are received

faster than processing time.

 - Impedance: spring-like behaviour.

 - (Connectivity) Smart: accepts PTP and LIN moves in the whole work

space, also joints. ~50 Hz

 - (Connectivity) Direct: suitable for reactive operations, but target

point must be very near

 (approx. degree range) otherwise it produces error. ~100 Hz

Changing between modes will stop the robot for about 100 ms.

A detailed available command list is provided in section Protocol. It is

also possible to directly speak with the driver through telnet (telnet

172.31.1.147 30000).

==

Protocol

===

- Format

 Each command is represented as a string line (string ended in \n,

\r or \n\r)

 which contains a command id, a : and parameters as space separated

values:

 - first value: command

 - separator: :

 - rest: parameters

 Spaces are trimed and multiple spaces (and also tabs) ignored.

Separator and parameters

 are not necessary for commands which don't require input

parameters.

 Each sent command will produce a space separated values string line

(string ended in \n, \r or \n\r)

 as reply containing the reply parameters.

- Command list

 All joints (j) are in rad, velocities (v) in percentage (0..1) if

not specified,

 forces and thresholds in Newton, time in seconds, stiffness

constant in N*m, blending in mm.

 Kuka uses Z,Y,X Euler Intrinsic in Rad -> Z * Y * X (alpha = RotZ,

beta = RotY, gamma = RotX).

 4000 Nm is a good stiffness constant.

 hello -> hello // Ack

 bye -> bye // Driver Shutdown

 smart joint move : j0 j1 j2 j3 j4 j5 j6 v0 v1 v2 v3 v4 v5 v6 -> done //

Smart joint move to joints

 direct joint move : j0 j1 j2 j3 j4 j5 j6 v0 v1 v2 v3 v4 v5 v6 -> done

// Direct joint move to joints, must be to target near current joints.

 smart cartesian move : x y z alpha beta gamma speed -> done // Smart

cartesian move at % speed

 direct cartesian move : x y z alpha beta gamma speed -> done // Direct

cartesian move at % speed

 joint move : j0 j1 j2 j3 j4 j5 j6 v0 v1 v2 v3 v4 v5 v6 -> done //

Normal ptp joint move, velocities are in %

 lin move : x y z alpha beta gamma speed blending -> done // Normal

cartesian LIN move to given frame. Speed in %

 ptp move : x y z alpha beta gamma speed blending -> done // Normal

cartesian PTP move to given frame. Speed in %

 linr move : x y z alpha beta gamma speed blending r -> done // Normal

cartesian LIN redundancy move to given frame. Redundancy r is an angle

value in rad.

 ptpr move : x y z alpha beta gamma speed blending r -> done // Normal

cartesian PTP redundancy move to given frame. Redundancy r is an angle

value in rad.

 linforcez move : x y z alpha beta gamma speed blending thresholdZ ->

done // Normal cartesian LIN move with force collision checking in Z (stops

if force exceeds threshold absolute value)

 ptpforcez move : x y z alpha beta gamma speed blending thresholdZ ->

done // Normal cartesian PTP move with force collision checking in Z (stops

if force exceeds threshold absolute value)

 linforce move : x y z alpha beta gamma speed blending thresholdX

trhesholdY thresholdZ -> done // Normal cartesian LIN move with force

collision checking in X Y Z

 ptpforce move : x y z alpha beta gamma speed blending thresholdX

trhesholdY thresholdZ -> done // Normal cartesian PTP move with force

collision checking in X Y Z

 linstiff move : x y z alpha beta gamma speed stiffness fx fy fz tx ty

tz -> done // LIN stifness move to position, f and t are required offset

force and torque. Usually current force is sent after smoothing.

 ptpstiff move : x y z alpha beta gamma speed stiffness fx fy fz tx ty

tz -> done // PTP stifness move to position, f and t are required offset

force and torque. Usually current force is sent after smoothing.

 start gravity : stiffness -> done // Starts a position holder,

experimental

 get tool frame -> x y z alpha beta gamma // Current TCP (tool)

 get flange frame -> x y z alpha beta gamma // Current flange frame

(without tool)

 get status -> moving / stopped // Current robot state

 get cartesian force -> fx fy fz tx ty tz // Force at TCP

 get joint position -> j0 j1 j2 j3 j4 j5 j6 // Joints values request

 get joint torque -> t0 t1 t2 t3 t4 t5 t6 // Joint torque in N*m

 stop -> done // Stops current move (hard stop, 100 ms or some seconds

if impedance was active)

Commands return "error" in case of error or "unknown command" if not

recognized.

Appendix C – Kuka KRC4 Message Protocols Example

Commands details

I0 is always the msgid

I1 is always the command id

ID
tag

ID
number

Inputs (Int 0-9, Real 0-9) Outputs (Int 0-9, Real 0-9) Description

STO 1 None None Stop robot right now

LIN 10
R[0..5] = X,Y,Z,A,B,C in mm
and degrees

None Cartesian LIN move

LIA 15 R[0..5] = A1..A6 in degrees None Joint LIN move

PTP 20
R[0..5] = X,Y,Z,A,B,C in mm
and degrees

None Cartesian PTP move

PTA 25 R[0..5] = A1..A6 in degrees None Joint PTP move

FIN 100 None I[2] --> 0/1 Is robot iddle?

SIO 200
I[2] = IO number, I[3] = IO
value 1/0

None Set IO

GIO 210 I[2] = IO number I[3] --> IO value 1/0 Get IO

DIS 300 None D[0] --> distance in mm
Get distance to next
cartesian target

GOP 310 None
R[0...5] --> X,Y,Z,A,B,C in mm
and degrees

Get next cartesian target
pose

GOA 320 None R[0..5] --> A1..A6 in degrees Get next joint target

